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 Abstract- This paper shows the application of two 

parameter  controller with internal-Model principle 

to a single machine- infinite bus system (SMIB), to 

achieve design specifications and disturbance 

rejection. In the two parameter model the feedback- 

compensator is used to achieve required transient 

response by pole placement and input compensator is 

used to achieve required steady state response. 

Finally this method concludes that the method is 

systematic, general and yields good results. 

Keywords: power system stabilizer, Two-parameter 

controller, internal model principle, disturbance 

rejection. 

 

                          I. INTRODUCTION 

           The importance of the excitation control [3] in 

improving the dynamic stability of synchronous 

generator is widely recognized, to improve the damping 

characteristics of a synchronous generator under 

disturbance conditions, power system stabilizers have 

been widely employed. Actually, the stabilization of a 

synchronous machine connected to an infinite bus 

through a two-parameter controller is discussed in the 

following sections. 

 
          Fig.1 One machine to infinite bus. 

 

 
          Fig. 2. Two Parameter controller  configuration. 

     So far in the power-systems controller designs, all the 

design specifications are not achieved simultaneously 

with single-parameter controller configuration. To 

achieve all (transient stability, steady state stability, 

tracking and disturbance rejection property) 

simultaneously there is a need of two-parameter control. 

 

    A previous article by Chen [1] in IEEE Control 

Systems Magazine discussed some basic issues in the 

design of two- parameter controller and showed how to 

solve pole zero assignment and model matching by 

solving set of linear algebraic equations. If this two-

parameter controller is applied to SMIB, meets all the 

specifications by tracking the reference in-put with large 

error for a disturbance occurred in the plant. 

 

    In order to deal with noise and disturbance by 

tracking reference input with zero steady state error two-

parameter controller with internal model principle 

design [2] is applied to SIMB.   

 

II. TWO- PARAMETER CONTROLLER DESIGN 

PROCEDURE 

 

       The two-parameter controller configuration which is 

shown in Fig. 2, where G(s) is plant transfer function, 

C1(s) and C2(s) are the two compensators, the two 

compensators will be chosen to have same denominator 

and have the form  

              

               C1(s) =L(s)/A(s).    

                 C2(s)=M(S)/A(S).                                        (1) 

                        

 Where L(S), M(S) and A(S) are polynomials to be 

determined. We will now discuss the implementation of 

an implementable transfer function in the two-parameter 

configuration. The transfer function from Y to R is 

   

       Y(S)/R(S) =   N(s)L(s)/[A(s)D(s)+M(s)N(s)]    

                        =N0(s)/D0(s)=G0(s)                               (2) 
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 Assume G(s) to be strictly proper; given 

G(S)=N(s)/D(s), where N(s) and D(s)  are co-prime and 

the  degree  of  N(s) is less than  the  degree of  D(s)  

that is equal to „n‟, now the design procedure for the 

implementation of the overall-transfer function is as 

follows. 

 

Step 1: compute the following rational function 

           

G0(s)/N(s) = N0(s)/D0(s)N(s) = Np(s)/ Dp(s)    (3) 

 

Where Np(s) and Dp(s) are coprime, if   N0(s) and D0(s)  

are coprime, common factors may exist only between  

N0(s) and N(S) cancel all common factors between 

them. 

 

Step2: If degree of Dp(s) = p < 2n-1, introduce an 

arbitrary polynomial E(s) of degree 2n-1-p. Because this 

polynomial will be cancelled in the design, its roots 

should be chosen inside an acceptable pole zero 

cancelation region. If deg of Dp(s) = p, set E(s)=1. In 

most applications we have  deg Dp(s) ≤  2n-1.The case in 

which deg Dp(s) > 2n-1is not considered. If G(s) is bi-

proper i.e., deg N(s) equals to deg  D(s), then the above 

procedure in step 2 is modified as if deg Dp(s) = p < 2n, 

introduce an arbitrary polynomial E(s) of degree (2n-p). 

 

Step 3:     Rewrite Eq. (3) as 

 

       G0(s) = [N(s)Np(s)]/Dp(s) 

              

                = N(s)[Np(s)E(s)]/[Dp(s)E(s)]           (4) 

 

Comparison of Eq. (2) and  (4) yields the following 

 

         L(s)= Np(s)E(s)                                        (5) 

 

        A(s)D(s)+M(s)N(s)=Dp(s)E(s) = F(s)       (6) 

 

The degree of F(s) is the sum of the degrees of Dp(s) and 

E(s), and equals to 2n-1.The degree of the denominator 

A(s) of the compensator is n-1.The polynomial equation 

in (6) can be solved directly using polynomial 

manipulation. It is, however, complicated we shall now 

solve it by matching coefficients. Matching coefficients 

leads directly to solving a set of linear algebraic 

equations. Now write polynomials A(s),D(s),F(s),M(s) 

and N(s) explicitly as 

 

           

            N(s) = N0 +N1s+…..+ Nns
n
 , Nn=0 

 
            

            D(s) = D0 +D1s+…..+ Dns
n
 ,  Dn≠0 

 

            A(s) = A0 +A1s+……+…..An-1s
n-1

 

 

            L(s) = L0 +L1s+……+…..Ln-1s
n-1

 

 

            M(s) = M0 +M1s+……+…..Mn-1s
n-1

  

 

            F(s) = F0 +F1s+……+…..F2n-1s
2n-1

  

 

The solution of eq. (6) and L(s) in eq. (5) will then 

implement G0(s). These are the reasons for introducing 

E(s) in eq. (4) if we don‟t introduce E(s), the 

compensators M(S)/A(S) computed from eq. (6)  may 

not be proper. However, if we introduce E(s) as 

suggested in step 2, then both M(S)/A(S) and L(S)/A(S) 

will be proper, and the resulting system is well posed. 

Thus the introduction of E(s) in the design procedure is 

crucial. The design involves pole zero cancelations. The 

canceled poles are the roots of E(s), which are chosen by 

the designer. Thus, if G0(s) is  stable and E(s) is 

Hurwitz, then the system is totally stable                                                                                 
 

IMPLEMENTABILITY CONDITIONS: 

 

Consider a plant with proper transfer function  

    G(s) =N(s)/D(s) 

Then G0(s) is implementable if and only if, G0(s) is 

stable and G0(s)/G(s) is stable and proper. 

 

ALTER NATIVE IMPLEMENTABILITY 

CONDITIONS: 

 

Consider a plant with proper transfer function G(s) 

=N(s)/D(s) 

Then G0(s) is implementable if and only if, 

. 

(1) D0(s) is Hurwitz 

(2) The deg of D0(s) minus the degree of N0(s) is 

greater than or equal to the degree of D(s) minus 

the degree of N(s) (pole-zero excess inequality). 

(3) All closed right of plane zeros (including the 

imaginary axis) of N(s) are retained in N0(s) 

(retainment of non minimum phase zeros). 

 

 

 



 

TWO PARAMETER CONTROLLER WITH 

INTERNAL-MODEL PRINCIPLE 

  

  Consider the two-parameter controller configuration 

shown in Fig. 2 the system is sad to achieve step 

disturbance rejection if output due   to any step 

disturbance with an un- known amplitude approaches 

zero as time becomes infinite. 

 

Let H(s) be the transfer-function from disturbance p to 

output y then we have 

 

H(s)=N(s)A(s)/[A(s)D(s)+M(s)N(s)] 

 

Using the final-value theorem it can be readily shown 

that the system achieves step disturbance rejection if and 

only if H(0)=0, generally N(0) is not zero thus the only 

way to achieve H(0)=0 is to make A(0)=0. This can be 

achieved by increasing degree of the two parameter 

controller [2]. 

 

If the degree of the compensator is not increased then 

the polynomial A(s) which is uniquely determined by 

Eq. (6) and we have no freedom in assigning A(0) = 0. 

 

III. CHOICE OF OVER- ALL TRANSFER 

FUNCTION 

      

   From the discussion in the preceding sections, we see 

that once an overall transfer function is chosen, the rest 

of the design is rather straight forward. There four the 

crux of the design is how to choose an overall transfer 

function. This choice appears to be based on the concept 

of dominant poles, Minimization of the integral of time 

multiplied by absolute error (itae) and Quadratic 

performance index method. The choice of method prefer 

to choose over all transfer function G0(s) is discussed by 

chi-Tsong [2], in this paper dominant pole technique is 

employed to choose overall transfer function. 

 

 

IV. BLOK-DIAGRAM REPRESENTATION OF 

SMIB SYSTEM 

 

     The block diagram of SMIB in fig(3) is taken from 

the reference [3], where armature resistance and 

saturation are neglected, and the mechanical power in-

put is assumed to be constant. The linearized model 

parameters k1 to k6 vary with the operating point, with 

the exception of k3. 

 
      Fig. 3  Small perturbation block diagram of SMIB 

 

Where 

ΔTe,ΔTm=electrical and mechanical torques 

respectively, 

D=damping factor, H=inertia constant, M=inertiacoeffi- 

cient=2H(sec), T
1

d0=field open circuited time constant, 

KA, TA=AVR time constant respectively. 

 

V. TWO PARAMETER- CONTROLLER DESIGN 

FOR SMIB 

The parameter values of SMIB are considered [3], 

KA=200   , K1=1.1272, K2 =1.152, K3 =0.36, K4 =1.6089 , 

K5 =-0.0745 , K6 =0.4177, TA =0.05. 

 

The un-compensated SMIB system transfer function is 

                                                     

=
141509.8572.33046.20

28950
234 



ssss
 

 

      Above un-compensated system is unstable one. By 

using the procedure presented in section-II we shall find 

A(s), M(s) and L(s) so that the transfer function from Y 

to R in Fig. 2 is  

 

     
)(0 sG

48041613419

480
234  ssss  

 

 

Choose the degree of compensator to 4 [2]. 

Arbitrarily, We Choose E(s) = (s+10)
4
. This polynomial 

will be cancelled in design. In the literature, it is 



suggested that canceled poles be chosen three or four 

times faster than the poles of G0(s). By solving eq. (6) 

and from eq. (5) the compensator parameters are 

obtained, the solution is   

 

L(s)= 480(s+10) 
4
. 

 

M(s)= 

(0.4801 + 0.7306s - 0.1944s
2 

+ 0.0156 s
3 +

 0.0014 s
4
) 

10
6
. 

 

A(s)=  

(0.2509s - 1.0864s
2 
- 0.116 s

3 
- 0.0029s

4
)10

6
. 

These compensators will then implement 0G (s). 

     

               VI. SIMULATION AND RESULTS 

 

   Simulations are first carried out on un-compensated 

system for a step input, response is observed shown in 

Fig. 4, which is increasingly oscillatory. 

 

 
      Fig. 4 Response of  an un- compensated system. 

 

 
Fig. 5 Response for a disturbance, without using internal 

model-principle design 

        

    After making the compensation with two-parameter 

controller, response is stabilized and tracks the reference 

in-put up to 6 sec, at t=6sec a disturbance is occurred 

causing the response to deviate from its steady state 

position, and again it reaches steady state with a large 

error, shown in Fig. 5. 

Finally it is observed from Fig. 6 that the two-parameter 

controller with internal-model principle design achieves 

all design specification even for a disturbance occurred 

in the plant. 

 

 
Fig. 6 Response for a disturbance, with internal model 

principle design 

 

VII.CONCLUSION 

     In this paper studies are carried out on single machine 

infinite bus system, the actual un-compensated system 

response is increasing oscillations. By incorporating two 

parameter controller with internal model principle, the 

total system rejects the disturbance by tracking the 

reference input with zero steady state error, the 

procedure is straightforward and yields better results. 

The problem of choosing over-all transfer function is 

also discussed. 
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